博客
关于我
elasticsearch的helpers.bulk和es_client.bulk的用法
阅读量:798 次
发布时间:2023-01-24

本文共 1219 字,大约阅读时间需要 4 分钟。

在Elasticsearch中批量删除日志数据,可以通过两种方式实现

from elasticsearch import Elasticsearch, helpersimport datetimees_client = Elasticsearch(["127.0.0.1:9200"], timeout=20)# 创建索引es_client.indices.create(index='log_index', ignore=400)# 准备待处理数据body1 = {"func_info":"删除日志", "error_info":"id为空111", "write_date":datetime.datetime.now()}body2 = {"func_info":"删除日志", "error_info":"id为空222", "write_date":datetime.datetime.now()}# 结果数组result = [  {'index': {'_index': 'log_index', '_type': 'log_index'}},  body1,  {'index': {'_index': 'log_index', '_type': 'log_index'}}, body2]# 批量插入数据es_result = es_client.bulk(  index="log_index",  doc_type="log_index",  body=result)# 刷/indexes_client.indices.flush()

使用es_client.bulk方法可以在批量插入数据时无需预先创建索引,直接操作目标index

这种方法在处理大量数据时可以减少事务 scrollbar相关的冲突和性能问题

from elasticsearch import Elasticsearchfrom elasticsearch import helpersimport datetimees_client = Elasticsearch(["127.0.0.1:9200"], timeout=20)# 创建索引es_client.indices.create(index='d_kl', ignore=400)# 准备单次操作action = {  "_index": "d_kl",  "_type": "d_kl",  "_source": {    "data": "数据"  }}result = [action]# 批量处理数据helpers.bulk(es_client, result)# 刷/indexes_client.indices.flush()

两种方法都能实现批量插入数据的目标,但在具体场景选择时需要考虑效率和可读性

转载地址:http://teeyk.baihongyu.com/

你可能感兴趣的文章
nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
查看>>
Nessus漏洞扫描教程之配置Nessus
查看>>
Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
查看>>
nestJS学习
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>
netbeans生成的maven工程没有web.xml文件 如何新建
查看>>
netcat的端口转发功能的实现
查看>>
netfilter应用场景
查看>>
netlink2.6.32内核实现源码
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
NetScaler的常用配置
查看>>
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
Netstat端口占用情况
查看>>
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
netty之 定长数据流处理数据粘包问题
查看>>